Sobolev inequalities for probability measures on the real line

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal-partitioning Inequalities for Nonatomic Probability Measures

Suppose fix,... ,fin are nonatomic probability measures on the same measurable space (S, S). Then there exists a measurable partition isi}"=i of 5 such that Pi(Si) > (n + 1 M)'1 for a11 i l,...,n, where M is the total mass of V?=i ßi (tne smallest measure majorizing each m). This inequality is the best possible for the functional M, and sharpens and quantifies a well-known cake-cutting theorem ...

متن کامل

Hardy-type Inequalities on the Real Line

We prove a certain type of inequalities concerning the integral of the Fourier transform of a function integrable on the real line.

متن کامل

A Note on Probability Weighted Moment Inequalities for Reliability Measures

Weighted distributions in general and length-biased distributions in particular are very useful and convenient for the analysis of lifetime data. These distributions occur naturally for some sampling plans in reliability, ecology, biometry and survival analysis. In this note an increasing failure rate property for lifetime distributions is used to define a natural ordering of the weighted relia...

متن کامل

Functional Inequalities for Gaussian and Log-Concave Probability Measures

We give three proofs of a functional inequality for the standard Gaussian measure originally due to William Beckner. The first uses the central limit theorem and a tensorial property of the inequality. The second uses the Ornstein-Uhlenbeck semigroup, and the third uses the heat semigroup. These latter two proofs yield a more general inequality than the one Beckner originally proved. We then ge...

متن کامل

Sharp Stability Theorems for the Anisotropic Sobolev and Log-sobolev Inequalities on Functions of Bounded Variation

Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV (R). As a corollary of this result, we also deduce a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2003

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm159-3-9